Selected paper

Czernik, Tadeusz Iskra, Daniel
Modeling Financial Surplus of the Housing Projects Developer
Year: 2014
Volume: 5
Issue: 3
Pages: 21-37
JEL: C02, C63, G33, R30
DOI: 10.5817/FAI2014-3-2

PDF

Keywords:
housing projects development, financial surplus, stochastic modeling, simulations

Abstract:
Recent events taking place on the housing project market provide a strong impetus to the study of risk in housing project development. This issue is important not only from the point of view of the developer but also his client. This paper proposes a dynamic model of the financial surplus process. The model takes into account the structure of the credit payments, and the random nature of the real estate sale process (compound Poisson process: the moment of sale and sale price), predictable and unpredictable expenses. Monte Carlo simulations were performed in order to introduce this model. The purpose of this paper is to present the proposed model of financial surplus that can be a starting point for further research and analysis.

References:

Alexander, C. (2008). Market Risk Analysis: Value at Risk Models, 4th ed. England: John Wiley & Sons. Bayraktar, E., Young, V. R. (2010). Optimal investment strategy to minimize occupation time. Annals of Operations Research, vol. 176(1), pp. 389-408. DOI: 10.1007/s10479-008-0467-2 Cai, N., Chen, N., Wan, X. (2010). Occupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options. Mathematics of Operations Research, vol. 35(2), pp. 412-437. DOI: 10.1287/moor.1100.0447 Czernik, T. (2013). Occupation time – potential applications. Geometric Brownian Motion case. In: Barczak, A. S., Tworek, P. (eds.), Zastosowanie metod ilościowych w zarządzaniu ryzykiem w działalności inwestycyjnej. Katowice: Polish Economic Society. Gentle, J. E. (2003). Random number generation and Monte Carlo methods. New York: Springer. Hanson, F. B. (2007). Applied Stochastic processes and control for jump-diffusions. Modeling, analysis, and computation. Philadelphia: SIAM. Huh, Y. K., Hwang, B. G., Lee, J. S. (2012). Feasibility analysis model for developer-proposed housing projects in the republic of Korea. Journal of Civil Engineering and Management, vol. 18(3), pp. 345-355. DOI: 10.3846/13923730.2012.698911 Iskra, D. (2011). Value at Risk - securities of portfolio optimization. A Geometric Brownian Motion case. Supplemento ai Rendiconti del Circolo matemattico di Palermo, vol. 2(83), pp. 199-208. Oksendal, B. (2007). Stochastic Differential Equations: An Introduction with Applications. Berlin Heidelberg: Springer. Ozdamar, L., Dundar, H. (1997). A flexible heuristic for a multi-mode capital constrained project scheduling problem with probabilistic cash inflows. Computers & Operations Research, vol. 24(12), pp. 1187-1200. DOI: 10.1016/S0305-0548(96)00058-5 Skorupka, D. (2007). Metoda identyfikacji i oceny ryzyka realizacji przedsięwzięć budowlanych. Warszawa: Wyd. Wojskowej Akademii Technicznej. Tworek, P. (2010a). Methods of risk identification in companies’ investment projects. In: Dluhosova, D. (ed.), Managing and modelling of financial risk. Ostrava, pp. 418-427. Tworek, P. (2010b). Risk management standards – the review of approaches and concept. In: Dluhosova, D. (ed.), Managing and modelling of financial risk. Ostrava, pp. 409-417. 

Call for papers

Call for papers is permanently open for articles across all the research areas.

tel.: +420 549 494 683 | e-mail: fai@econ.muni.cz
© Copyright 2010–13 IFT